Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Mater ; : e2400124, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38488277

RESUMEN

A nano-biocomposite film with ultrahigh photoconductivity remains elusive and critical for bio-optoelectronic applications. A uniform, well-connected, high-concentration nanomaterial network in the biological matrix remains challenging to achieve high photoconductivity. Wafer-scale continuous nano-biocomposite film without surface deformations and cracks play another major obstacle. Here we observed ultrahigh photoconductivity in DNA-MoS2 nano-biocomposite film by incorporating a high-concentration, well-percolated, and uniform MoS2 network in the ss-DNA matrix. This was achieved by utilizing DNA-MoS2 hydrogel formation, which resulted in crack-free, wafer-scale DNA-MoS2 nano-biocomposite films. Ultra-high photocurrent (5.5 mA at 1 V) with a record-high on/off ratio (1.3×106) was observed, five orders of magnitude higher than conventional biomaterials (∼101) reported so far. The incorporation of the Wely semimetal (Bismuth) as an electrical contact exhibited ultrahigh photoresponsivity (2.6×105 A/W). Such high photoconductivity in DNA-MoS2 nano-biocomposite could bridge the gap between biology, electronics, and optics for innovative biomedicine, bioengineering, and neuroscience applications. This article is protected by copyright. All rights reserved.

2.
J Control Release ; 368: 453-465, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38447812

RESUMEN

Fibroblasts (hDFs) are widely employed for skin regeneration and the treatment of various skin disorders, yet research were rarely investigated about restoration of diminished therapeutic efficacy due to cell senescence. The application of stem cell and stem cell-derived materials, exosomes, were drawn attention for the restoration functionality of fibroblasts, but still have limitation for unintended side effect or low yield. To advance, stem cell-derived nanovesicle (NV) have developed for effective therapeutic reagents with high yield and low risk. In this study, we have developed a method using red light irradiated human adipose-derived stem cells (hADSCs) derived NV (R-NVs) for enhancing the therapeutic efficacy and rejuvenating hDFs. Through red light irradiation, we were able to significantly increase the content of stemness factors and angiogenic biomolecules in R-NVs. Treatment with these R-NVs was found to enhance the migration ability and leading to rejuvenation of old hDFs to levels similar to those of young hDFs. In subsequent in vivo experiments, the treatment of old hDFs with R-NVs demonstrated a superior skin wound healing effect, surpassing that of young hDFs. In summary, this study successfully induced rejuvenation and leading to increased therapeutic efficacy to R-NVs treated old hDFs previously considered as biowaste.


Asunto(s)
Luz Roja , Rejuvenecimiento , Humanos , Recuperación de la Función , Células Madre , Fibroblastos
3.
Vaccines (Basel) ; 11(9)2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37766179

RESUMEN

Despite numerous studies on cancer treatment, cancer remains a challenging disease to cure, even after decades of research. In recent years, the cancer vaccine has emerged as a promising approach for cancer treatment, offering few unexpected side effects compared to existing therapies. However, the cancer vaccine faces obstacles to commercialization due to its low efficacy. Particularly, the Toll-like receptor (TLR) adjuvant system, specifically the TLR 7/8 agonist, has shown potential for activating Th1 immunity, which stimulates both innate and adaptive immune responses through T cells. In this study, we developed ProLNG-S, a cholesterol-conjugated form of resiquimod (R848), to enhance immune efficacy by stimulating the immune system and reducing toxicity. ProLNG-S was formulated as ProLNG-001, a positively charged liposome, and co-administered with ovalbumin (OVA) protein in the B16-OVA model. ProLNG-001 effectively targeted secondary lymphoid organs, resulting in a robust systemic anti-tumor immune response and tumor-specific T cell activation. Consequently, ProLNG-001 demonstrated potential for preventing tumor progression and improving survival compared to AS01 by enhancing anti-tumor immunity.

4.
J Photochem Photobiol B ; 243: 112714, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37084656

RESUMEN

BACKGROUND: High-energy irradiation eliminates cancer cells by destroying their genetic components. However, there are several side effects from doing this, such as fatigue, dermatitis, and hair loss, which remain obstacles to this treatment. Here, we propose a moderate method that uses low-energy white light from a light-emitting diode (LED) to selectively inhibit cancer cell proliferation without affecting normal cells. METHODS: The association between LED irradiation and cancer cell growth arrest was evaluated based on cell proliferation, viability, and apoptotic activity. Immunofluorescence, polymerase chain reaction, and western blotting were performed in vitro and in vivo to identify the metabolism related to the inhibition of HeLa cell proliferation. RESULTS: LED irradiation aggravated the defective p53 signaling pathway and induced cell growth arrest in cancer cells. Consequently, cancer cell apoptosis was induced by the increased DNA damage. Additionally, LED irradiation inhibited the proliferation of cancer cells by suppressing the MAPK pathway. Furthermore, the suppression of cancer growth by the regulation of p53 and MAPK was observed in cancer-bearing mice irradiated with LED. CONCLUSIONS: Our findings suggest that LED irradiation can suppress cancer cell activity and may contribute to preventing the proliferation of cancer cells after medical surgery without causing side effects.


Asunto(s)
Neoplasias , Proteína p53 Supresora de Tumor , Humanos , Animales , Ratones , Células HeLa , Proteína p53 Supresora de Tumor/genética , Apoptosis , Luz , Proliferación Celular/efectos de la radiación , ADN
5.
ACS Appl Mater Interfaces ; 15(9): 11536-11548, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36811454

RESUMEN

Cell sheets and spheroids are cell aggregates with excellent tissue-healing effects. However, their therapeutic outcomes are limited by low cell-loading efficacy and low extracellular matrix (ECM). Preconditioning cells with light illumination has been widely accepted to enhance reactive oxygen species (ROS)-mediated ECM expression and angiogenic factor secretion. However, there are difficulties in controlling the amount of ROS required to induce therapeutic cell signaling. Here, we develop a microstructure (MS) patch that can culture a unique human mesenchymal stem cell complex (hMSCcx), spheroid-attached cell sheets. The spheroid-converged cell sheet structure of hMSCcx shows high ROS tolerance compared to hMSC cell sheets owing to its high antioxidant capacity. The therapeutic angiogenic efficacy of hMSCcx is reinforced by regulating ROS levels without cytotoxicity using light (610 nm wavelength) illumination. The reinforced angiogenic efficacy of illuminated hMSCcx is based on the increased gap junctional interaction by enhanced fibronectin. hMSCcx engraftment is significantly improved in our novel MS patch by means of ROS tolerative structure of hMSCcx, leading to robust wound-healing outcomes in a mouse wound model. This study provides a new method to overcome the limitations of conventional cell sheets and spheroid therapy.


Asunto(s)
Fibronectinas , Cicatrización de Heridas , Ratones , Animales , Humanos , Especies Reactivas de Oxígeno/metabolismo , Fibronectinas/farmacología , Fibronectinas/metabolismo , Cicatrización de Heridas/fisiología , Matriz Extracelular/metabolismo , Modelos Animales de Enfermedad
6.
Tissue Eng Regen Med ; 19(6): 1161-1168, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36006602

RESUMEN

BACKGROUND: Various methods based on gold nanoparticles (AuNPs) have been applied to enhance the photothermal effect. Among these methods, combining gold nanoparticles and stem cells has been suggested as a new technique for elevating the efficiency of photothermal therapy (PT) in terms of enhancing tumor targeting effect. However, to elicit the efficiency of PT using gold nanoparticles and stem cells, delivering large amounts of AuNPs into stem cells without loss should be considered. METHODS: AuNPs, AuNPs-decorated silica nanoparticles, and silica-capped and AuNPs-decorated silica nanoparticles (SGSs) were synthesized and used to treat human mesenchymal stem cells (hMSCs). After evaluating physical properties of each nanoparticle, the concentration of each nanoparticle was estimated based on its cytotoxicity to hMSCs. The amount of AuNPs loss from each nanoparticle by exogenous physical stress was evaluated after exposing particles to a gentle shaking. After these experiments, in vitro and in vivo photothermal effects were then evaluated. RESULTS: SGS showed no cytotoxicity when it was used to treat hMSCs at concentration up to 20 µg/mL. After intravenous injection to tumor-bearing mice, SGS-laden hMSCs group showed significantly higher heat generation than other groups following laser irradiation. Furthermore, in vivo photothermal effect in the hMSC-SGS group was significantly enhanced than those in other groups in terms of tumor volume decrement and histological outcome. CONCLUSION: Our results suggest that additional silica layer in SGSs could protect AuNPs from physical stress induced AuNPs loss. The strategy applied in SGS may offer a prospective method to improve PT.


Asunto(s)
Nanopartículas del Metal , Neoplasias , Humanos , Ratones , Animales , Oro/farmacología , Dióxido de Silicio , Terapia Fototérmica , Neoplasias/patología
7.
Adv Mater ; 34(18): e2110424, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35263477

RESUMEN

RNA can self-fold into complex structures that can serve as major biological regulators in protein synthesis and in catalysis. Due to the abundance of structural primitives and functional diversity, RNA has been utilized for designing nature-defined goals despite its intrinsic chemical instability and lack of technologies. Here, a robust, free-standing RNA hydrogel is developed through a sequential process involving both ligation and rolling circle transcription to form RNA G-quadruplexes, capable of both catalytic activity and enhancing expression of several proteins in sub-compartmentalized, phase-separated translation environments. The observations suggest that this hydrogel will expand RNA research and impact practical RNA principles and applications.


Asunto(s)
G-Cuádruplex , ARN , Hidrogeles , Proteínas/genética , ARN/química
8.
J Nanobiotechnology ; 19(1): 352, 2021 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-34717632

RESUMEN

BACKGROUND: Human adipose-derived stem cells (hADSCs) have been used in various fields of tissue engineering because of their promising therapeutic efficacy. However, the stemness of hADSCs cannot be maintained for long durations, and their therapeutic cellular functions, such as paracrine factor secretion decrease during long-term cell culture. To facilitate the use of long-term-cultured hADSCs (L-ADSCs), we designed a novel therapeutic anti-senescence ion-delivering nanocarrier (AIN) that is capable of recovering the therapeutic properties of L-ADSCs. In the present study, we introduced a low-pH-responsive ion nanocarrier capable of delivering transition metal ions that can enhance angiogenic paracrine factor secretion from L-ADSCs. The AINs were delivered to L-ADSCs in an intracellular manner through endocytosis. RESULTS: Low pH conditions within the endosomes induced the release of transition metal ions (Fe) into the L-ADSCs that in turn caused a mild elevation in the levels of reactive oxygen species (ROS). This mild elevation in ROS levels induced a downregulation of senescence-related gene expression and an upregulation of stemness-related gene expression. The angiogenic paracrine factor secretion from L-ADSCs was significantly enhanced, and this was evidenced by the observed therapeutic efficacy in response to treatment of a wound-closing mouse model with conditioned medium obtained from AIN-treated L-ADSCs that was similar to that observed in response to treatment with short-term-cultured adipose-derived stem cells. CONCLUSIONS: This study suggests a novel method and strategy for cell-based tissue regeneration that can overcome the limitations of the low stemness and therapeutic efficacy of stem cells that occurs during long-term cell culture.


Asunto(s)
Tejido Adiposo , Portadores de Fármacos , Sistemas de Liberación de Medicamentos/métodos , Iones/química , Células Madre , Inductores de la Angiogénesis/farmacología , Animales , Vasos Sanguíneos/patología , Diferenciación Celular , Línea Celular , Proliferación Celular , Células Cultivadas , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Especies Reactivas de Oxígeno/metabolismo
9.
Adv Sci (Weinh) ; 8(19): e2102043, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34363349

RESUMEN

The deficiency of antigen-specific T cells and the induction of various treatment-induced immunosuppressions still limits the clinical benefit of cancer immunotherapy. Although the chemo-immunotherapy adjuvanted with Toll-like receptor 7/8 agonist (TLR 7/8a) induces immunogenic cell death (ICD) and in situ vaccination effect, indoleamine 2,3-dioxygenase (IDO) is also significantly increased in the tumor microenvironment (TME) and tumor-draining lymph node (TDLN), which offsets the activated antitumor immunity. To address the treatment-induced immunosuppression, an assemblable immune modulating suspension (AIMS) containing ICD inducer (paclitaxel) and supra-adjuvant (immune booster; R848 as a TLR 7/8a, immunosuppression reliever; epacadostat as an IDO inhibitor) is suggested and shows that it increases cytotoxic T lymphocytes and relieves the IDO-related immunosuppression (TGF-ß, IL-10, myeloid-derived suppressor cells, and regulatory T cells) in both TME and TDLN, by the formation of in situ depot in tumor bed as well as by the efficient migration into TDLN. Local administration of AIMS increases T cell infiltration in both local and distant tumors and significantly inhibits the metastasis of tumors to the lung. Reverting treatment-induced secondary immunosuppression and reshaping "cold tumor" into "hot tumor" by AIMS also increases the response rate of immune checkpoint blockade therapy, which promises a new nanotheranostic strategy in cancer immunotherapy.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/inmunología , Terapia de Inmunosupresión/métodos , Inmunoterapia/métodos , Nanomedicina/métodos , Animales , Modelos Animales de Enfermedad , Inmunoterapia/efectos adversos
10.
Nanomaterials (Basel) ; 11(6)2021 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-34203018

RESUMEN

A variety of nanostructured diagnostic tools have been developed for the precise detection of known genetic variants. Molecular beacon systems are very promising tools due to their specific selectivity coupled with relatively lower cost and time requirements than existing molecular detection tools such as next generation sequencing or real-time PCR (polymerase chain reaction). However, they are prone to errors induced by secondary structure responses to environmental fluctuations, such as temperature and pH. Herein, we report a temperature-insensitive, bead-immobilized, molecular beacon-equipped novel DNA nanostructure for detection of cancer miRNA variants with the consideration of thermodynamics. This system consists of three parts: a molecular beacon for cancer-specific RNA capture, a stem body as a core template, and a single bead for solid-support. This DNA system was selectively bound to nanosized beads using avidin-biotin chemistry. Synthetic DNA nanostructures, designed based on the principle of fluorescence-resonance enhanced transfer, were effectively applied for in vitro cancer-specific RNA detection. Several parameters were optimized for higher performance, with a focus on thermodynamic stability. Theoretical issues regarding the secondary structure of a single molecular beacon and its combinatory forms were also studied. This study provides design guidelines for new sensing systems of miRNA variation for next-generation biotechnological applications.

11.
Macromol Biosci ; 21(8): e2100106, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34117832

RESUMEN

Various synthetic polymers based on poly(amino ester) (PAE) are suggested as candidates for gene and drug delivery owing to their pH-responsiveness, which contributes to efficient delivery performance. PAE-based pH-responsive polymers are more biodegradable and hydrophilic than other types of pH-responsive polymers. The functionality of PAE-based polymers can be reinforced by using different chemical modifications to improve the efficiency of gene and drug delivery. Additionally, PAE-based polymers are used in many ways in the biomedical field, such as in transdermal delivery and stem cell culture systems. Here, the recent novel PAE-based polymers designed for gene and drug delivery systems along with their further applications toward adult stem cell culture systems are reviewed. The synthetic tactics are contemplated and pros and cons of each type of polymer are analyzed, and detailed examples of the different types are analyzed.


Asunto(s)
Portadores de Fármacos , Polímeros , Técnicas de Cultivo de Célula , Sistemas de Liberación de Medicamentos , Ésteres/farmacología , Concentración de Iones de Hidrógeno , Micelas
12.
Adv Funct Mater ; 31(12): 2008279, 2021 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-33613148

RESUMEN

Due to its unique physical and chemical characteristics, DNA, which is known only as genetic information, has been identified and utilized as a new material at an astonishing rate. The role of DNA has increased dramatically with the advent of various DNA derivatives such as DNA-RNA, DNA-metal hybrids, and PNA, which can be organized into 2D or 3D structures by exploiting their complementary recognition. Due to its intrinsic biocompatibility, self-assembly, tunable immunogenicity, structural programmability, long stability, and electron-rich nature, DNA has generated major interest in electronic and catalytic applications. Based on its advantages, DNA and its derivatives are utilized in several fields where the traditional methodologies are ineffective. Here, the present challenges and opportunities of DNA transformations are demonstrated, especially in biomedical applications that include diagnosis and therapy. Natural DNAs previously utilized and transformed into patterns are not found in nature due to lack of multiplexing, resulting in low sensitivity and high error frequency in multi-targeted therapeutics. More recently, new platforms have advanced the diagnostic ability and therapeutic efficacy of DNA in biomedicine. There is confidence that DNA will play a strong role in next-generation clinical technology and can be used in multifaceted applications.

13.
J Tissue Eng ; 12: 20417314211067004, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34987748

RESUMEN

Comprehensive research has led to significant preclinical outcomes in modified human adipose-derived mesenchymal stem cells (hADSCs). Photobiomodulation (PBM), a technique to enhance the cellular capacity of stem cells, has attracted considerable attention owing to its effectiveness and safety. Here, we suggest a red organic light-emitting diode (OLED)-based PBM strategy to augment the therapeutic efficacy of hADSCs. In vitro assessments revealed that hADSCs basked in red OLED light exhibited enhanced angiogenesis, cell adhesion, and migration compared to naïve hADSCs. We demonstrated that the enhancement of cellular capacity was due to an increased level of intracellular reactive oxygen species. Furthermore, accelerated healing and regulated inflammatory response was observed in mice transplanted with red light-basked hADSCs. Overall, our findings suggest that OLED-based PBM may be an easily accessible and attractive approach for tissue regeneration that can be applied to various clinical stem cell therapies.

14.
Chembiochem ; 22(2): 392-397, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-32881235

RESUMEN

With the advent of innovative genomic discovery toolkits such as RT-PCR, genetic information can be quickly decrypted, and this has resulted in significant progress in overcoming diseases. However, RT-PCR has the serious problem of frequent errors, and the demand for a new gene diagnostic system is emerging. Herein, we propose a universal coding system for the effective detection of short single-stranded DNA or RNA by using a topological transformation-based nano-barcoding technique (TNT). Our goal was to develop a dedicated diagnostic device that unifies the other gene groups, thus resulting in minimum testing. In a universal coding system consisting of two separate circulation structures, different gene groups become generalized into specific single genes with the same sequence by a strand-displacement reaction and are then amplified, eventually being quickly detected in one TNT system. Simple gene diagnostic systems like this make high-speed, point-of-care diagnostic technologies, and we are very confident that these will provide clinical gene detection in the near future.


Asunto(s)
Pruebas en el Punto de Atención , ARN/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Humanos
15.
Chembiochem ; 21(17): 2533-2539, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32291863

RESUMEN

As the market for personalized lung cancer medicine expands, the demand for molecular diagnostic tools in general, and methods of detecting multiple genes with qualitative, quantitative, and high specificity in particular, have grown. Here, we propose a system for the effective detection of lung cancer-specific, long-length epidermal growth factor receptor (EGFR) gene mutations by using a topological transformation nano-barcoding technique (TNT). In former TNT studies, EGFR was successfully detected in cell environments and at test stages in the presence of a reference gene. However, because typical EGFR target concentrations are significantly lower at the clinical stage and the probe-binding ability of long-length targets is lower that of short targets, our system employs polymerase chain reaction (PCR) amplification, restriction, and filtering (PRF) for EGFR fragmentation to maximize performance. In a PRF system, the target is amplified by PCR, cut to a suitable size by a restriction enzyme, and filtered by a magnetic bead. With detection limits of 0.3555 % and 1.500 % for EGFR Del 19 and L858R mutations, respectively, the proposed TNT with PRF can effectively distinguish mutant cell lines and efficiently detect various lengths of genetic variations in clinical trials.


Asunto(s)
Código de Barras del ADN Taxonómico , Receptores ErbB/genética , Grafito/química , Reacción en Cadena de la Polimerasa , Animales , Células Cultivadas , Grafito/síntesis química , Humanos , Ratones
16.
Nano Converg ; 7(1): 5, 2020 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-32064551

RESUMEN

Gold particles have been widely used in the treatment of prostate cancer due to their unique optical properties, such as their light-heat conversion in response to near-infrared radiation. Due to well-defined synthesis mechanisms and simple manufacturing methods, gold particles have been fabricated in various sizes and shapes. However, the low photothermal transduction efficiency in their present form is a major obstacle to practical and therapeutic uses of these particles. In the current work, we present a silica-coated gold nanoparticle cluster to address the therapeutic limit of single gold nanoparticles (AuNPs) and use its photothermal effect for treatment against PC-3, a typical prostate cancer. Due to its specific nanostructure, this gold nanocluster showed three times higher photothermal transduction efficiency than free single AuNPs. Moreover, while free single particles easily clump and lose optical properties, this silica-coated cluster form remained stable for a longer time in a given medium. In photothermal tests under near-infrared radiation, the excellent therapeutic efficacy of gold nanoclusters, referred to as AuNC@SiO2, was observed in a preclinical sample. Only the samples with both injected nanoclusters followed by photothermal treatment showed completely degraded tumors after 15 days. Due to the unique intrinsic biocompatibility and higher therapeutic effect of these silica-coated gold nanoclusters, they may contribute to enhancement of therapeutic efficacy against prostate cancer.

17.
Nano Converg ; 7(1): 2, 2020 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-31903521

RESUMEN

Owing to its precise manipulation in nanoscale, DNA as a genetic code becomes a promising and generic material in lots of nanotechnological outstanding exploitations. The nanoscale assembly of nucleic acids in aqueous solution has showed very remarkable capability that is not achievable from any other material resources. In the meantime, their striking role played by effective intracellular interactions have been identified, making these more attractive for a variety of biological applications. Lately, a number of interesting attempts have been made to augment their marvelous diagnostic and therapeutic capabilities, as being integrated with inorganic compounds involving gold, iron oxide, quantum dot, upconversion, etc. It was profoundly studied how structural DNA-inorganic hybrid materials have complemented with each other in a synergistic way for better-graded biological performances. Such hybrid materials consisting of both structural DNAs and inorganics are gradually receiving much attention as a practical and future-oriented material substitute. However, any special review articles highlighting the significant and innovative materials have yet to be published. At the first time, we here demonstrate novel hybrid complexes made of structural DNAs and inorganics for some practical applications.

18.
Anal Chem ; 91(23): 14808-14811, 2019 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-31710463

RESUMEN

Effective intermolecular interaction is required between probe and target molecules for successful detection of biomarkers. Here, we demonstrate that localization of probes on DNA nanostructures improves detection sensitivity and reaction rate. The structural flexibility of DNA nanostructures enabled frequent intramolecular interactions among the localized probes. The Smoluchowski coagulation method and the coarse-grained molecular dynamic software oxDNA were used for theoretical estimation of inter- and intramolecular behaviors of the DNA nanostructures as well as adequate experiments verifying the improvements in sensitivity with probe localization. Remarkably, the probe-localized DNA nanostructure had an increased sensitivity up to 274 times higher than that of the same probes without localization. We believe this achievement represents a wide applicability as a potential design strategy for robust, reliable, and sensitive biosensors.


Asunto(s)
Técnicas Biosensibles , Sondas de ADN/química , ADN/análisis , Nanoestructuras/química , Biomarcadores/análisis , ADN/química , Humanos , Simulación de Dinámica Molecular , Sensibilidad y Especificidad , Programas Informáticos
19.
Nat Commun ; 10(1): 3745, 2019 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-31431623

RESUMEN

The low response rate of current cancer immunotherapy suggests the presence of few antigen-specific T cells and a high number of immunosuppressive factors in tumor microenvironment (TME). Here, we develop a syringeable immunomodulatory multidomain nanogel (iGel) that overcomes the limitation by reprogramming of the pro-tumoral TME to antitumoral immune niches. Local and extended release of immunomodulatory drugs from iGel deplete immunosuppressive cells, while inducing immunogenic cell death and increased immunogenicity. When iGel is applied as a local postsurgical treatment, both systemic antitumor immunity and a memory T cell response are generated, and the recurrence and metastasis of tumors to lungs and other organs are significantly inhibited. Reshaping of the TME using iGel also reverts non-responding groups to checkpoint blockade therapies into responding groups. The iGel is expected as an immunotherapeutic platform that can reshape immunosuppressive TMEs and synergize cancer immunotherapy with checkpoint therapies, with minimized systemic toxicity.


Asunto(s)
Antineoplásicos Inmunológicos/administración & dosificación , Vacunas contra el Cáncer/administración & dosificación , Inmunoterapia/métodos , Nanogeles/administración & dosificación , Neoplasias/tratamiento farmacológico , Animales , Vacunas contra el Cáncer/química , Vacunas contra el Cáncer/inmunología , Línea Celular Tumoral/trasplante , Modelos Animales de Enfermedad , Composición de Medicamentos/métodos , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Humanos , Inyecciones Intralesiones , Liposomas , Ratones , Nanogeles/química , Recurrencia Local de Neoplasia/prevención & control , Neoplasias/inmunología , Neoplasias/patología , Jeringas , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología , Resultado del Tratamiento , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología
20.
Polymers (Basel) ; 11(4)2019 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-31018560

RESUMEN

Polymer actuators are important components in lab-on-a-chip and micromechanical systems because of the inherent properties that result from their large and fast mechanical responses induced by molecular-level deformations (e.g., isomerization). They typically exhibit bending movements via asymmetric contraction or expansion with respect to changes in environmental conditions. To enhance the mechanical properties of actuators, a strain gradient should be introduced by regulating the molecular alignment; however, the miniaturization of polymer actuators for microscale systems has raised concerns regarding the complexity of such molecular control. Herein, a novel method for the fabrication of micro-actuators using a simple molecular self-alignment method is presented. Amphiphilic molecules that consist of azobenzene mesogens were located between the hydrophilic and hydrophobic surfaces, which resulted in a splayed alignment. Thereafter, molecular isomerization on the surface induced a large strain gradient and bending movement of the actuator under ultraviolet-light irradiation. Moreover, the microelectromechanical systems allowed for the variation of the actuator size below the micron scale. The mechanical properties of the fabricated actuators such as the bending direction, maximum angle, and response time were evaluated with respect to their thicknesses and lengths. The derivatives of the polymer actuator microstructure may contribute to the development of novel applications in the micro-robotics field.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...